38 research outputs found

    Children of Prisoners: Their Situation and Role in Long-Term Crime Prevention

    Get PDF
    Studies suggest that maintaining family ties can help reduce the likelihood of reoffending, and that while parental imprisonment can increase a child’s likelihood to offend, positive responses to the situation can aid the children’s well-being, attitude and attainment. Drawing on findings from the recently completed EU-funded COPING Project on the mental health of children of prisoners, this chapter explores the factors that aid a child’s ability to cope with parental imprisonment and the actions that different stakeholders can take to support them. It identifies some of the mental health impacts at different stages of parental imprisonment, the roles played by non-imprisoned parents/carers and by schools, and suggests options for further clarifying the factors that help and hinder children of prisoners in the short and long term

    Targeting Cattle-Borne Zoonoses and Cattle Pathogens Using a Novel Trypanosomatid-Based Delivery System

    Get PDF
    Trypanosomatid parasites are notorious for the human diseases they cause throughout Africa and South America. However, non-pathogenic trypanosomatids are also found worldwide, infecting a wide range of hosts. One example is Trypanosoma (Megatrypanum) theileri, a ubiquitous protozoan commensal of bovids, which is distributed globally. Exploiting knowledge of pathogenic trypanosomatids, we have developed Trypanosoma theileri as a novel vehicle to deliver vaccine antigens and other proteins to cattle. Conditions for the growth and transfection of T. theileri have been optimised and expressed heterologous proteins targeted for secretion or specific localisation at the cell interior or surface using trafficking signals from Trypanosoma brucei. In cattle, the engineered vehicle could establish in the context of a pre-existing natural T. theileri population, was maintained long-term and generated specific immune responses to an expressed Babesia antigen at protective levels. Building on several decades of basic research into trypanosomatid pathogens, Trypanosoma theileri offers significant potential to target multiple infections, including major cattle-borne zoonoses such as Escherichia coli, Salmonella spp., Brucella abortus and Mycobacterium spp. It also has the potential to deliver therapeutics to cattle, including the lytic factor that protects humans from cattle trypanosomiasis. This could alleviate poverty by protecting indigenous African cattle from African trypanosomiasis

    Disorders of sexual differentiation in puppies and kittens: a diagnostic and clinical approach

    No full text
    none2noneROMAGNOLI S.; SCHLAFER DHRomagnoli, Stefano; Schlafer, D

    Abnormal expression of trophoblast major histocompatibility complex class I antigens in cloned bovine pregnancies is associated with a pronounced endometrial lymphocytic response

    No full text
    Early embryonic losses are much higher in nuclear transfer (cloned) pregnancies, and this is a major impediment to improving the efficiency of cloned animal production. in cattle, many of these losses occur around the time of placental attachment from the fourth week of gestation. We studied the potential for altered immunologic status of cloned pregnancies to be a contributing factor to these embryonic losses. Expression of major histocompatibility complex class I (MHC-I) by trophoblast cells and distribution of endometrial T-lymphocyte numbers were investigated. Six 5-wk-old cloned pregnancies were generated, and 2 others at 7 and 9 wk were also included, all derived from the same fetal cell line. All 8 cloned placentas displayed trophoblast MHC-I expression. None of the 8 controls (4-7 wk old) showed any MHC-I expression. The percentage of trophoblast cells expressing MHC-I varied in the clones from 17.9% to 56.5%. Numbers of T lymphocytes (CD3(+) lymphocytes) were significantly higher in the endometrium of the majority of cloned pregnancies compared with controls. In the cloned pregnancies, large aggregates of T cells were frequently observed in the endometrium in addition to increased numbers of diffusely spread subepithelial lymphocytes. As trophoblast MHC-I expression is normally suppressed during early gestation, the observed MHC-I expression in the cloned pregnancies is likely to have induced a maternal lymphocytic response that would be detrimental to maintaining viability of the cloned pregnancy. These findings support a role for immunologic rejection in the syndrome of early embryonic loss in cloned bovine pregnancies

    Theriogenology Question of the Month

    No full text

    Major histocompatibility antigen expression on the bovine placenta: its relationship to abnormal pregnancies and retained placenta

    No full text
    In viviparous animals, regulation of expression of major histocompatibility complex (MHC) class I antigens by the trophoblast cells, which constitute the outermost layer of the placenta, seems to be critical for maternal immunological acceptance of an allogeneic fetus. Cattle are unusual in this regard, since the bovine trophoblast cells, in specific regions of the uterine/placental interface, normally express MHC class I antigens during the third trimester of gestation. This expression appears to be biologically relevant as MHC class I compatibility between a cow and her fetus has been associated with an increased incidence of placental retention. We have found significant differences in lymphocyte populations, cytokine production, and trophoblast cell apoptosis in the placentomes of MHC-compatible and -incompatible pregnancies at parturition. This suggests that maternal immunological recognition of fetal MHC class I proteins triggers an immune/inflammatory response that contributes to placental separation at parturition in cattle. Early in pregnancy, a complete shutdown of MHC class I expression by trophoblast cells appears to be critical for normal placental development and fetal survival. In bovine somatic cell nuclear transfer (SCNT) pregnancies, there is an extremely high rate of fetal loss between days 30 and 90 of pregnancy. We have shown that in bovine SCNT pregnancies, between days 34 and 63 of gestation, there is both abnormal expression of MHC class I antigens by trophoblast cells and an abnormal accumulation of lymphocytes within the uterine stroma. Consequently, it is likely that activation of the maternal mucosal immune system, within the uterus at the same time when placentomes are being established, interferes with the process of placentome development and leads to immune-mediated abortion. Our data suggest that bovine MHC-compatible pregnancies provide a unique model for studying regulation of the uterine immune system, as well as immune-mediated placental rejection. (C) 2004 Elsevier B.V. All rights reserved
    corecore